解决方案
    无分类
你的位置:首页 > 解决方案

风电系统解决方案

2012-05-23 14:48:17      点击:

风力发电从技术层面看,高空“风筝型”发电有两大关键环节,首先是高空风能收集环节,其次是高空风能转化环节。其中,在高空风能收集环节,为了把“风筝”凭借风力送上天,至少需要100吨拉力。如果用钢铁做绳子,如此远距离,钢绳连自身重力都无法承受,因此采用的材料必须比重极轻,并具备高强度、耐腐蚀的特点。
高空风能转化环节,则需要有效解决空中系统的稳定性,高空风能发电的持续性和稳定性难以得到有效保障。“风筝型”高空风力发电系统中,由于“风筝”既担负平衡作用,又担负做功的主体,平衡运动与做功运动互相耦合,所以不能分别控制,对平衡的控制必然影响到做功运动。而做功运动也必然会影响到系统的平衡。在整个运行做功的过程中,系统的平衡稳定很容易被破坏,而寻找平衡与做功的最佳控制模式复杂而又困难。
站在能源格局的角度,利用好风能十分必要。风能是太阳能的转化形式,是一种不产生污染物排放的可再生自然资源。受破解化石能源日趋枯竭、保障能源供应安全和保护环境等诉求驱动,20世纪70年代中期以来,世界主要发达国家和一些发展中国家均十分重视风能的开发利用。特别是自20世纪90年代初以来,现代风能的最主要利用形式——风力发电发展十分迅速,全球风电机装机年均增长率超过30%,从1990年的216万千瓦升至2003年的4020万千瓦。
同时,风电商业性开发的可行性已得到了验证,限制风能大规模商业开发利用的主要因素——风力发电成本过去20年中有了大幅下降。随风力资源不同、风电场规模不同和采用技术不同,风力发电的成本也相应有所不同。目前低风力发电成本已降至每千瓦时3至5美分,高风力发电成本也降至每千瓦时10至12美分。到2010年,其更将降至每千瓦时2至4美分和每千瓦时6至9美分,达到与化石能源展开竞争的水平。